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INTERACTION OF HYDRODYNAMIC

EXTERNAL DISTURBANCES WITH THE BOUNDARY LAYER

UDC 532.526S. A. Gaponov and A. V. Yudin

Disturbances produced by external flow vorticity in a supersonic boundary layer are studied. It is
shown that both vortical and nonvortical waves play an important role. The calculations are performed
for subsonic and supersonic flows for a Mach number M = 2.

Introduction. At present, in solving problems of turbulence arising in boundary layers, the study of their
receptivity to external disturbances acquires great significance. In this case, disturbance generation in boundary
layers is attributed to stationary and nonstationary factors (surface vibration, acoustic waves, external turbulence,
etc.). One of the first authors to treat this problem and to introduce the term “receptivity” was Morkovin [1]. There
are a number of experimental and theoretical studies of subsonic boundary-layer receptivity. A detailed survey can
be found in [2, 3]. Much less is known, however, about the receptivity of a supersonic boundary layer, with all the
publications in this field being devoted to studies of interaction of acoustic waves with the boundary layer [4–6]. At
the same time, a supersonic flow may contain not only acoustic disturbances, but also vortical and entropy or heat
waves. The interaction of those with a supersonic boundary layer has not yet been adequately investigated. The
problem of receptivity of vortical disturbances at subsonic velocities has been analyzed in some publications, but
there is no agreement among the authors about the mechanism of disturbance generation in the boundary layer.
In this work, excitation of stationary and nonstationary waves by external hydrodynamic disturbances in subsonic
and supersonic boundary layers was calculated.

Formulation of the Problem and Governing Equations. A linear statement of the problem is consid-
ered. A compressible gas flow in the boundary layer on a flat plate is taken as the initial undisturbed flow.

Following Petrov [7], the disturbances in the boundary layer are considered in the orthogonal system of
coordinates (ξ, ψ, z) fitted to the stream surfaces of the main flow. Here ψ is the stream function, ξ = x+O(Re−2)
for the plate, Re =

√
u∞x/ν∞ is the Reynolds number, u∞ and ν∞ are the velocity and kinematic viscosity of the

incident flow, and x, y, and z are the longitudinal, normal-to-wall, and transversal coordinates of the Cartesian
coordinate system with the origin on the plate edge. The gas is perfect with a constant Prandtl number Pr. Making
use of the estimates with respect to the integer powers of the Reynolds number Re as in [8] and rejecting terms of
order Re−2 with respect to the dominant terms of the linearized Navier–Stokes equations [7] for disturbances of the
form ã(ξ, ψ) exp(iαξ + iβz − iωt), we obtain

∂2ṽ = −(∂2 ln ρ)ṽ − [iα− (∂1 lnu) + ∂1]ũ− iβw̃ − ucρ̃/ρ− gmu∂1p̃+ u∂1(T̃ /T ),

∂2[p̃+ 2µ(iαũ+ iβw̃ − 2ẽ0/3)] = −ρ(h1u+ dt)ṽ + iατ̃12 + iβτ̃23,

∂2τ̃12 = (iα+ ∂1)p̃+ ρ(∂2u)ṽ + ρ(∂1u+ dt)ũ+ u(∂1u)ρ̃− iατ̃11 − iβτ̃13,

∂2ũ = −(iα+ ∂1)ṽ − (∂2u)µ̃/µ+ τ̃12/µ,
(1)

∂2τ̃23 = iβp̃+ ρdtw̃ − iατ̃13 − iβτ̃33, ∂2w̃ = −iβṽ + τ̃23/µ,
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∂2q̃ = iωp̃+ [ρ(∂2H)− iαµ(∂2u)]ṽ + (∂1H)(ρũ+ uρ̃) + (α2 + β2)µh̃/Pr + ρdtH̃ − u(iατ̃11 + iβτ̃13),

∂2h̃ = −Pr (∂2u)ũ− (∂2h)µ̃/µ+ Pr (q̃ − uτ̃12)/µ,

where ∂1 = ∂/∂ξ, ∂2 = ρu∂/∂ψ, dt = uc + u∂1, uc = iαu − iω, h1 = −∂1 ln (ρu), τ̃11 = 2µ(iαũ− ẽ0/3),
τ̃13 = µ(iαw̃ + iβũ), τ̃33 = 2µ(iβw̃ − ẽ0/3), ẽ0 = −(∂2 ln ρ)ṽ − ucρ̃/ρ, u is the velocity, T is the temperature,
ρ is the density, H = h + u2/2 is the total enthalpy, µ is the viscosity, p̃ is the pressure, ṽ and w̃ are the complex
amplitudes of the transversal and normal-to-stream-surface components of velocity disturbance, ρ̃/ρ = gmp̃− T̃ /T
(T̃ = gm1h̃), H̃ = h̃+uũ, gm = 1/p, and gm1 = 1/cp (cp is the specific heat capacity of the gas at constant pressure).
The form of the equations is not changed by normalization to the following scales: ν∞/u∞ for length, ν∞/u2

∞ for
time, µ∞ for viscosity and the stream function, u∞ for velocity and its disturbances, T∞ for temperature, ρ∞ for
density, u2

∞ for enthalpy, ρ∞u2
∞ for pressure and disturbances of viscous stresses, ρ∞u3

∞ for the quantity q̃, and
u2
∞/T∞ for specific heat capacity (the subscript ∞ refers to the values in the incident flow). In this case, we have
gm = γM2 and gm1 = (γ − 1)M2, where γ = cp/cV is the ratio of specific heats, and M is the Mach number.

We substitute the independent variables: Re =
√
ξ, dη = df/u, and f = ψ/Re. Then, we obtain

∂1ã = (1/Re)(∂ã+ f1ã
′) and ∂2ã = ρã′/Re, where ∂ = 0.5∂/∂Re; the prime stands for the derivative with re-

spect to η, and f1 = −f/(2Reu). In this case, the equations based on the estimates of the critical layer have the
following form:

ṽ′ = −gmuT∂p̃+ ρT ′ṽ − T (f0u
′ + ∂)ũ− ũw − icT r̃ − (f2ρT

′ − u∂)T̃ − f1T ũ
′ + f2T̃

′,

p̃′ = −(ic + rhu)ṽ + ixτ̃12 + iz τ̃23 − 2µrũ′w,

τ̃ ′12 = (ix + T∂)p̃+ ρu′ṽ + (ic + f1u
′ + u∂)ũ+ f2u

′r̃ − ĩt + f2ũ
′,

ũ′ = −ixṽ − u′µtT̃ + τ̃12/µr, (2)

τ̃ ′23 = iz p̃+ (ic − µa + u∂)w̃ − izµrũw + f2w̃
′, w̃′ = −iz ṽ + τ̃23/µr,

q̃′ = iωReT p̃+ ρH ′ṽ + (icu+ f1H
′ + f2u

′ + u2∂)ũ+ (ic − µa/Pr + u∂)h̃+ f2H
′r̃ − uĩt + f2uũ

′ + f2h̃
′,

h̃′ = −Pru′ũ− h′µtT̃ + Pr (q̃ − uτ̃12)/µr.

Here ũw = ixũ + izw̃, ĩt = ixµrũw + µaũ, µa = (i2x + i2z)µr, p̃ = π̃ − 2µ(iαũ + iβw̃ − 2ẽ0/3), r̃ = ρ̃/ρ = gmp̃− ρT̃ ,
ic = Reuc = iRe(uα−ω), ix = iαReT , iz = iβReT , rh = Reh1 = f0u

′+ f1ρT
′, f0 = −f1/u, f2 = f1u, µr = µρ/Re,

and µt = d lnµ/dT .
With allowance for the substitutions, systems (1) and (2) have the form

Z ′ = (A+D∂)Z, (3)

where Z = (p̃, ṽ, ũ, w̃, h̃, τ̃12, τ̃23, q̃) in system (2) and A and D are the square matrices of the specified functions Re
and η.

The parabolized system (3) is solved under the following boundary conditions. The disturbances of velocities
and temperature (or heat flux) on the surface are zero:

ṽ(0) = ũ(0) = w̃(0) = T̃ (0) = 0 [T̃ ′(0) = 0]. (4)

Outside the boundary layer, the disturbances are obtained from their corresponding free-stream values (without
the model).

Numerical Scheme and Results. On using the approximation ∂ã/∂Re ≈ (ã − ã0)/∆Re (∆Re = Re −
Re0 is the step of the marching scheme and the subscript 0 corresponds to the values calculated at the previous
step), system (3) is transformed into the system of ordinary differential equations

Z ′ = AZ +B(Z −Z0). (5)

Its general solution is a superposition of four linearly independent solutions of a homogeneous system and an

arbitrary quotient: Z =
4∑

m=1

Cm(x)Zm + Z5. Herewith, the coefficients Cm are found from the conditions on the

surface (4). The selection of four fundamental solutions should be made from those decaying as η → ∞. The
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quotient should be a solution that describes external (undisturbed by the boundary layer) waves. It is, therefore,
assumed that Z5 is known. For external acoustic waves, where α 6= ω and α = O(β), four fundamental solutions
in [8] were based on the theory of parallel flows:

Z1 =



0
−iα
λ1

0
0

λ2
1 + α2

αβ

λ2
1 + α2


, Z2 =



0
−iβ

0
λ2

0
αβ

λ2
2 + β2

αβ


,

Z3 =



B −B2/Pr
λ3B1

iαB1

iβB1

B

2iαλ3B1

2iβλ3B1

λ3B/Pr + 2iαλ3B1


, Z4 =



A−A2/Pr
λ4A1

iαA1

iβA1

A

2iαλ4A1

2iβλ4A1

λ4A/Pr + 2iαλ4A1


,

Z = (p̃, ṽ, ũ, w̃, h̃, τ̃12, τ̃23, q̃),

λ1 = λ2 =
√
i(α− ω) + λ2, λ3 =

√
Bi(α− ω) + λ2,

λ4 =
√
Ai(α− ω) + λ2, λ =

√
α2 + β2,

C = Pr +
gmi(α− ω)− (4/3)gm1i(α− ω)Pr

1 + (4/3)gmi(α− ω)
,

A =
Pr (gm − gm1)i(α− ω)
(1 + (4/3)i(α− ω))C

(
1 +

Pr (gm − gm1)i(α− ω)
(1 + (4/3)i(α− ω))C2

)
,

B = C −A, A1 = gm1 − gm(1−A/Pr ), B1 = gm1 − gm(1−B/Pr ).

In the present paper, the case is considered where the external disturbances are entrained by the flow. For a
parallel flow and negligibly small viscosity of the gas, we have ω = α; therefore, uc = 0 outside the boundary layer.
In this case, λ1 = λ2 = λ3 = λ4 = −λ, and three out of four constructed fundamental vectors Zm are linearly
independent, e.g., Z1, Z3, and Z4. It should be noted that p̃ = 0 for all those vectors. At the same time, it can
be shown that the pressure disturbance in a homogeneous flow satisfies the Laplace equation ∆p̃ = 0. Therefore,
alongside the solutions corresponding to p̃ = 0, a solution satisfying the Laplace equation can be constructed for
p̃ = exp (−λy). Therewith, the velocity disturbances V = (ũ, ṽ, w̃) satisfy the equation

grad p̃ =
( d2

dy2
− λ2

)
V .

By virtue of the fact that the exponent of p̃ is −λ, the solution has the form V = (a+ by) exp (−λy). Leaving out
all the intermediate calculations, we show one of the possible vectors on the external edge of the boundary layer:
Z2 = (2λ, 1, 0, 0, 0, 0, 0, 0). We have, therefore, four linearly independent solutions on the edge of the boundary
layer, continuously transforming into the decaying ones as y →∞.

In addition, the fifth vector Z5 corresponding to external disturbances should be specified at the boundary-
layer edge. It can be a linear combination of four linearly independent solutions increasing with respect to y and
analogous to Zm, where −λm are substituted for λm. The calculations were mostly performed for the case where
Z5 was a vector of nonvortical disturbances obtained from Z2 by substituting −λ2 for λ2 and normalized to the
fourth component. Under such normalization, the amplitude of the transversal velocity of external disturbances at
the boundary-layer edge is equal to unity. As the calculation results show, the most intensive disturbances of the
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Fig. 1. Distributions of the amplitudes of longitudinal velocity distur-
bances over the boundary layer for three approximations: curve 1 refers
to the parallel-flow model, curve 2 to the local model, and curve 3 to
the model based on parabolized stability equations.

longitudinal velocity inside the boundary layer occur in the low-frequency range and provided that α � β. Their
maximum is observed for waves with a characteristic value of the wavenumber β = β∗.

Characteristic distributions of the amplitudes |ũ| over the boundary layer under the specified vectors are
shown in Fig. 1 for three approximations (parallel-flow model, local model, and model based on parabolized stability
equations). The local model was developed by neglecting terms proportional to ∂Z in (3). The behavior of
temperature-disturbance amplitudes is similar. It is clear that, in the first of the considered approximations, the
value of |ũ| at the boundary-layer edge is of the same order of magnitude as the maximum value inside the boundary
layer. From calculations using the local model, it follows that the disturbances |ũ| at the boundary-layer edge are
close to zero. Making use of more exact parabolized equations of stability leads to a further decrease in |ũ| at the
boundary-layer edge. Nonzero values of |ũ| at the boundary-layer edge for the parallel-flow and local models are
due to the employed vector Z1, in which ũ 6= 0. This also holds for the distribution of temperature disturbances,
which do not tend to zero at the boundary-layer edge because the vector Z3 with h̃ 6= 0 is used. Thus, the solution
obtained using the vectors Z1 and Z3 is inconsistent with the solution based on the local model and parabolized
equations.

Further, other vectors Z1 and Z3 are presented, obtained from the exact equations of motion, continuity,
and heat conduction for a homogeneous flow outside the boundary layer. It should be noted that p̃ = 0 and w̃ = 0
for the vectors Z1 and Z3. In addition, h̃ = 0 for the vector Z1 and ũ = 0 for the vector Z3.

For p̃ = T̃ = w̃ = 0, we have two equations
∂ũ

∂x
=
∂2ũ

∂y2
− λ2ũ2,

∂ũ

∂x
+
∂ṽ

∂y
+ iαũ = 0.

Henceforward, the wavenumbers and coordinates are normalized to the length scale ν∞/u∞. The first of those
equations has a fundamental solution

ũ = (1/
√
x) exp (−λ2x− y2/(4x)).

Therefore, for y � 1, we have ũ � ∂ũ/∂y � ∂2ũ/∂y2, and instead of the second equation the following may be
taken:

∂2ũ

∂y2
+
∂ṽ

∂y
=

∂

∂y

(∂ũ
∂y

+ ṽ
)
≈ 0.

Thus, ṽ = −∂ũ/∂y. By virtue of the fact that τ̃12 = ∂ũ/∂y + iαṽ, τ̃23 = ∂w̃/∂y + iβṽ, and q̃ = τ̃12 + λ∂T/∂y for
T̃ = w̃ = p̃ = 0 and provided that ∂ṽ/∂y � ṽ and ũ � ∂ũ/∂y, we have Z1 = (0,−1, 0, 0, 0, 1 − iα,−iβ, 1). For
p̃ = w̃ = ũ = 0, the equations of heat conduction and continuity are used in the following form:

∂T̃

∂x
=

1
Pr

(∂2T

∂y2
− λ2T̃

)
, −∂T̃

∂x
+
∂ṽ

∂y
= 0.

It follows from the above that we may take Z3 = (0,−1, 0, 0, 0,−iα,−iβ,−1/gm1) as the third vector.
Figure 2 shows the amplitude distributions of longitudinal velocity disturbances over the boundary layer for

various values of the frequency parameter at β = 10−3. Figure 2 also shows a dependence proportional to ηu′,
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Fig. 2. Distributions of the amplitudes of longitudinal velocity disturbances over the boundary
layer for β = 10−3 and ω = 10−5 and M = 0 (1), ω = 10−6 and M = 0 (2), ω = 10−7 and
M = 0 (3), and ω = 10−6 and M = 2 (4); curve 5 is the dependence proportional to ηu′ [9].

Fig. 3. Maximum values of the longitudinal velocity amplitude inside the boundary layer versus the Reynolds number
for M = 0 (a) and M = 2 (b), ω = 10−6 and β = 0.4 · 10−3 (1), 0.6 · 10−3 (2), 0.8 · 10−3 (3), 10−3 (4), and 1.2 · 10−3 (5).

obtained analytically in [9] for M = 0, which is a self-similar eigenfunction of the boundary layer equations for
small values of β [10]. Similar results for M = 0 were obtained in [11, 12] by the method of optimum disturbances
specified at x = X0 in the absence of disturbances at the boundary-layer edge. A weak dependence of the profile
of |ũ| on changes in β and disturbances for x = X0 is discussed in [12]. The independence of the amplitude
profile ũ on the parameters of disturbances at the external edge of the boundary layer seems to be caused by factors
mentioned in [12]. The main of those factors is the fact that external disturbances generate eigen disturbances with
an amplitude ũ ∼ yu′.

Figure 3a shows the maximum values of the longitudinal velocity amplitude inside the boundary layer versus
the Reynolds number for ω = 10−6, M = 0, and various wavenumbers β. It can be seen from Fig. 2 that the
results coincide for ω = 10−6 and 10−7. This implies that the disturbances may be considered stationary for
ω 6 10−6. It follows from the results shown in Fig. 3a that the maximum values of the amplitudes correspond to
wavenumbers (βRe)1 = 0.7 for fixed β and (βRe)2 = 0.55 for a fixed Reynolds number (wavenumber based on the
thickness x/Re = Re). These data are in good agreement with the results obtained by the method of optimum
disturbances [11] excited in the region of the flat-plate leading edge. In addition, the value (βRe)2 = 0.55 is in
good agreement with the experimental results on evolution of streamwise structures [13]. It was found in [13] that
the z period is approximately equal to the doubled thickness of the boundary layer, i.e., λ ≈ 2 · 5x/Re, therefore,
βRe = 2π/10 ≈ 0.6 (it is taken into account here that x = Re2).

The calculation results for M = 2 and ω = 10−6 are plotted in Fig. 3b. Qualitatively, they are close to the
results obtained for M = 0. However, the amplitude of disturbances due to external hydrodynamic waves decreases
if the boundary layer is supersonic.
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Fig. 4. Maximum values of the longitudinal velocity amplitude inside the
boundary layer versus the Reynolds number for M = 2, β = 10−3, and
ω = 10−4 (1), 10−5 (2), and 10−6 (3).

Figure 4 shows the dependences max |ũ|(Re) for β = 10−3. It follows from Fig. 4 that the amplitude
significantly depends on the frequency parameter ω: as ω increases, the amplitude of disturbances decreases.

From the analysis of the phase velocity c versus Re (obtained from the phase growth along the x axis for
the disturbance ũ in the vicinity of its maximum, i.e., for η ≈ 2.3) for ω = 0.3 · 10−4, β = 10−3 and M = 0 and 2,
it follows that the phase velocity varies from 0.7 to 0.9 over the range of Re = 200–400. In experimental studies of
propagation of incipient turbulence spots [3], it was found that their leading edge, which is in the range of high Re
values, propagates with a velocity c ≈ 0.9, and the trailing edge propagates with a velocity c ≈ 0.5, which is in
qualitative agreement with the results of our calculations. It should be taken into consideration that the phase
velocity was calculated, whereas the object of calculations in experimental studies was most probably the group
velocity. The present calculations show, however, that ∂c/∂α � 1, and the group velocity is close to the phase
velocity.

As has been mentioned above, the results presented in this paper were obtained for nonvortical external
disturbances. Additional calculations allowing for vortical disturbances in the external flow entrained by the main
stream show that the character of disturbances inside the layer remains unchanged in this case. Only the relation
between the amplitudes of external and internal disturbances undergoes some changes. The results obtained can be
explained as follows. For high Reynolds numbers, the evolution of disturbances does not significantly depend on the
presence of waves at the boundary-layer edge, and for low Reynolds numbers, the amplitude of disturbances inside
the layer is determined by conditions at x = X0. A change in external conditions at the boundary-layer edge is
equivalent to a change in the initial data at x = X0, which results in variation of the absolute value of the amplitude
for x > X0, whereas the character of the dependence of |ũ| on η is determined by the first eigen-solution [12].

Conclusions. The following conclusions can be drawn from the present investigations.
1. External vortical and nonvortical waves entrained by the stream can excite high-intensity disturbances in

the boundary layer.
2. The efficiency of disturbance generation increases with decreasing frequency, and its maximum is observed

for waves with a characteristic value of the wavenumber β∗ in the lateral direction. In the low-frequency range, the
value of β∗ significantly exceeds the streamwise wavenumber α, which is characteristic of experimentally observed
streamwise structures.

3. For stationary disturbances and M = 0, under changes in Re and β = const, the highest efficiency of
disturbance generation in the boundary layer corresponds to the value (βRe)1 ≈ 0.7, and under changes in β and
Re = const corresponds to (βRe)2 ≈ 0.55. The latter value is in good agreement with the period of streamwise
structures obtained in the experiments of [11].

4. The efficiency of disturbance generation in a supersonic boundary layer is lower than that in a subsonic
boundary layer.

The authors would like to express their gratitude to G. V. Petrov for the calculation program he kindly
offered.
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